
Online-Appendix to “Only time will tell”

Appendix B Continuous action set

B.1 Optimal compensation design

In this Appendix we extend our setup to a continuous action set, a ∈ A = [0, ā].

For simplicity, we restrict attention to the case of a risk-neutral agent and no upper

bounds on payments. Formally, we now consider a family of filtered probability spaces{
(Ω,FX , (FXt )0≤t≤T̄ ,Pa); a ∈ [0, ā]

}
, and, to avoid degeneracies assume that Pa1 is equiv-

alent to Pa2 for all a1, a2 ∈ [0, ā].32 The associated cost function k (a) satisfies the usual

conditions, i.e., it is strictly increasing and strictly convex with k(0) = k′(0) = 0 as well

as k′(ā) = ∞. To mirror the structure of the analysis in the main text, we will, first,

focus on optimal compensation design, i.e., characterize cost-minimizing contracts to im-

plement a given action a (the first problem in Grossman and Hart (1983)). We return to

the problem of the optimal action choice by the principal at the end of this Appendix.

As is common also in static moral hazard problems with continuous actions (see e.g.,

Holmstrom (1979) and Shavell (1979)) we assume that the first-order approach is valid

and provide a sufficient condition in Theorem B.1 below. Hence, for each a, we replace

(IC) by the following first-order condition

∂

∂a
Ea
[∫ T̄

0

e−rAtdbt

]
= k′ (a) . (IC-FOC)

As now local incentives matter according to (IC-FOC), the appropriate measure of

agent performance, analogous to the likelihood ratio in the binary action case, is the score

function which measures the (local) sensitivity of the likelihood function with respect to

the action. Formally, denoting by Pat the restriction of Pa to FXt , we define for each

a > 0 the likelihood function Lt(a|ω) :=
dPat
dP0
t
(ω) which exists from the Radon-Nikodym

Theorem. To illustrate the close connection to the binary-action case we then denote the

score by

Lt(a) :=
∂

∂a
logLt(a|ω).

Here, we impose standard Cramér-Rao regularity conditions used in statistical inference

(cf., e.g., Casella and Berger (2002)) by stipulating, in particular, that the score Lt(a)

exists and is bounded for any (t, ω). Then, analogous to the binary action case, the upper

32 Two measures Pa1 and Pa2 are equivalent if Pa1 � Pa2 and Pa2 � Pa1 .
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support of the date-t score distribution, L̄t (a),33 will be the relevant measure of informa-

tiveness quantifying the information benefit of deferral in the setting with a continuous

action set, where we again assume that L̄t (a) exists and has positive probability mass

(cf., Condition 1). Now, since the score is a martingale, L̄t (a) is an increasing function

of time (cf., Observation 1).

It is then immediate that our preceding characterization readily extends to the con-

tinuous action case with L̄t replaced by L̄t (a). For completeness, the following Theorem

provides a characterization of the optimal contract including a sufficient condition for

the validity of the first-order approach.34

Theorem B.1 Assume that Pã
(
Lt (a) = L̄t (a)

)
> 0 is strictly concave in ã for all t and

that L̄t (a) ≤ k′(a)
R+k(a)

.

1) If R ≤ R̄(a) = k′(a)

L̄T̂ (a)(a)
− k (a), (PC) is slack, and it is optimal to stipulate a perfor-

mance bonus at a single date T̂ (a) = min{arg maxt e
−∆rtL̄t(a)}.

2) Otherwise, (PC) binds, and payments are optimally made at maximally two pay-

out dates which are characterized as follows: If there exists a date T1(a) such that

L̄T1(a)(a) = k′(a)
R+k(a)

and C
(

k′(a)
R+k(a)

∣∣∣ a) = e∆rT1(a),35 this is the unique payout date. Else,

the contract requires a short-term payout date TS(a) and a long-term date TL(a) such

that T̂ (a) ≥ TL(a) > TS(a) ≥ 0.

Proof of Theorem B.1. The arguments are identical to the proof of Theorem 1

and Lemma 1 given that the first-order approach is valid, which is ensured by the

assumption that Pã
(
Lt (a) = L̄t (a)

)
> 0 is strictly concave in ã for all t.36 To see

this, note that, given a contract as characterized in Theorem B.1, the agent’s problem

maxã

{
Eã
[∫ T̄

0
e−rAtdbt

]
− k(a)

}
is strictly concave. Hence, the first-order condition in

(IC-FOC) is both necessary and sufficient for incentive compatibility. Q.E.D.

33 The score is no longer bounded above by one, but this is irrelevant for the further analysis.
34 The condition is reminiscent of the convexity of the distribution function condition (CDFC) in static

models (cf. e.g., Rogerson (1985)).
35 In analogy to the binary action case the cost of informativeness C ( ·| a) is defined as the lower hull

of the set ∪T̄t=0

(
L̄t (a) , e∆rt

)
.

36 In fact, this sufficient condition is stronger than needed. It would suffice to assume strict concavity
in a at the relevant optimal payout dates characterized in Theorem B.1 (T̂ (a), T1(a) or TS(a) and TL(a)).
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B.2 Optimal action choice

So far, the analysis has focused on the principal’s costs to induce a given action37

W (a) =


k′(a)

L̄T̂ (a)(a)
e∆rT̂ (a)

(R + k (a))C
(

k′(a)
R+k(a)

∣∣∣ a) R ≤ R̄(a)

R > R̄(a).

We now shortly discuss the principal’s preferences over actions and the resulting equi-

librium action choice, the second problem in Grossman and Hart (1983). We capture

the benefits of an action a to the principal by a strictly increasing and concave bounded

function π (a). Here, π (a) could correspond to the present value of the (gross) profit

streams under action a. Given any (gross) profits π(a) and compensation costs W (a) the

equilibrium action then solves

a∗ = arg max
a∈A

π (a)−W (a) ,

and, given a solution a∗, the chosen payout times are characterized by Theorem B.1.38
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R+k(a∗) the optimal payout date is at t = 0.
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